General Features

90% as Sweet as Sucrose

“Clean” Taste

Sweetness Intensity Increases as Tagatose Concentration Increases

Sweetness Potency Relative to Sucrose is Consistent Across All Concentrations

Sweetness Potency is Consistent in Different Food Systems

Provides a Sweet, Fruity, Caramel-like Flavor Profile

Has More Sweetness, Sweet Aftertaste, Less Bitterness than Erythritol

Blends Well with High-Intensity Sweeteners and Polysaccharides
Technical Tagatose

Slightly Less Soluble than Sucrose

Hygroscopicity: Similar to Sucrose, Less than Fructose (<85% RH)

Similar Water-Holding Capacity as Sucrose

Reduces Water Activity more than Sucrose

Anti-Microbial

Modulates Viscosity

Reduces Stickiness

Browning Agent
Technical Tagatose

Solid: pH Stable

Liquid: Most Stable in an Unheated, Acidic Environment Buffered by Citrate

Lower Melting Point than Sucrose

Lower Glass Transition Temperature than Sucrose

Readily Crystallizes

Depresses Freezing Point

Application Specific Features

Milk: Mixture with Either Sucralose or Stevia is as Sweet as Sucrose; Tagatose–Stevia Sweeter than Erythritol–Stevia

Chocolate Milk: Tagatose Improves Mouth-feel, Sweetness, Toffee flavor and Sweet Aftertaste and Reduces Bitterness of Acesulfame K

Milk, Diet Lemonade: Stable.1

Yogurt: Stable, Retains Probiotics, Acceptable to Consumers

Meringue: Increases Antioxidant Capacity
Technical Tagatose

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
</table>